Refrigerator
Refrigerator

Economies of scale

Economies of scale apply to a variety of organizational and business situations and at various levels, such as a business or manufacturing unit, plant or an entire enterprise. When average costs start falling as output increases, then economies of scale are occurring. If a firm's marginal cost of producing a good or service is beneath its average cost of producing that good or service, then the firm is experiencing economies of scale. Some economies of scale, such as capital cost of manufacturing facilities and friction loss of transportation and industrial equipment, have a physical or engineering basis.
Economies of scale is a practical concept that may explain real-world phenomena such as patterns of international trade or the number of firms in a market. The exploitation of economies of scale helps explain why companies grow large in some industries. It is also a justification for free trade policies, since some economies of scale may require a larger market than is possible within a particular country´for example, it would not be efficient for Liechtenstein to have its own carmaker if they only sold to their local market. A lone carmaker may be profitable, but even more so if they exported cars to global markets in addition to selling to the local market. Economies of scale also play a role in a "natural monopoly". There is a distinction between two types of economies of scale: internal and external. An industry that exhibits an internal economy of scale is one where the costs of production fall when the number of firms in the industry drops, but the remaining firms increase their production to match previous levels. Conversely, an industry exhibits an external economy of scale when costs drop due to the introduction of more firms, thus allowing for more efficient use of specialized services and machinery.
Drag loss of vehicles like aircraft or ships generally increases less than proportional with increasing cargo volume, although the physical details can be quite complicated. Therefore, making them larger usually results in less fuel consumption per ton of cargo at a given speed.
Many manufacturing facilities, especially those making bulk materials like chemicals, refined petroleum products, cement and paper, have labor requirements that are not greatly influenced by changes in plant capacity. This is because labor requirements of automated processes tend to be based on the complexity of the operation rather than production rate, and many manufacturing facilities have nearly the same basic number of processing steps and pieces of equipment, regardless of production capacity.
The literature assumed that due to the competitive nature of reverse auctions, and in order to compensate for lower prices and lower margins, suppliers seek higher volumes to maintain or increase the total revenue. Buyers, in turn, benefit from the lower transaction costs and economies of scale that result from larger volumes. In part as a result, numerous studies have indicated that the procurement volume must be sufficiently high to provide sufficient profits to attract enough suppliers, and provide buyers with enough savings to cover their additional costs.